ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.03829
11
7

Robot Motion Prediction by Channel State Information

7 July 2023
Rojin Zandi
Hojjat Salehinejad
Kian Behzad
Elaheh Motamedi
Milad Siami
ArXivPDFHTML
Abstract

Autonomous robotic systems have gained a lot of attention, in recent years. However, accurate prediction of robot motion in indoor environments with limited visibility is challenging. While vision-based and light detection and ranging (LiDAR) sensors are commonly used for motion detection and localization of robotic arms, they are privacy-invasive and depend on a clear line-of-sight (LOS) for precise measurements. In cases where additional sensors are not available or LOS is not possible, these technologies may not be the best option. This paper proposes a novel method that employs channel state information (CSI) from WiFi signals affected by robotic arm motion. We developed a convolutional neural network (CNN) model to classify four different activities of a Franka Emika robotic arm. The implemented method seeks to accurately predict robot motion even in scenarios in which the robot is obscured by obstacles, without relying on any attached or internal sensors.

View on arXiv
Comments on this paper