ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.04004
14
3

MAP-NBV: Multi-agent Prediction-guided Next-Best-View Planning for Active 3D Object Reconstruction

8 July 2023
Harnaik Dhami
V. Sharma
Pratap Tokekar
ArXivPDFHTML
Abstract

Next-Best View (NBV) planning is a long-standing problem of determining where to obtain the next best view of an object from, by a robot that is viewing the object. There are a number of methods for choosing NBV based on the observed part of the object. In this paper, we investigate how predicting the unobserved part helps with the efficiency of reconstructing the object. We present, Multi-Agent Prediction-Guided NBV (MAP-NBV), a decentralized coordination algorithm for active 3D reconstruction with multi-agent systems. Prediction-based approaches have shown great improvement in active perception tasks by learning the cues about structures in the environment from data. However, these methods primarily focus on single-agent systems. We design a decentralized next-best-view approach that utilizes geometric measures over the predictions and jointly optimizes the information gain and control effort for efficient collaborative 3D reconstruction of the object. Our method achieves 19% improvement over the non-predictive multi-agent approach in simulations using AirSim and ShapeNet. We make our code publicly available through our project website: http://raaslab.org/projects/MAPNBV/.

View on arXiv
Comments on this paper