ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.04780
11
24

Comparison of Point Cloud and Image-based Models for Calorimeter Fast Simulation

10 July 2023
Fernando Torales Acosta
Vinicius Mikuni
Benjamin Nachman
M. Arratia
B. Karki
R. Milton
P. Karande
Aaron Angerami
    DiffM
ArXivPDFHTML
Abstract

Score based generative models are a new class of generative models that have been shown to accurately generate high dimensional calorimeter datasets. Recent advances in generative models have used images with 3D voxels to represent and model complex calorimeter showers. Point clouds, however, are likely a more natural representation of calorimeter showers, particularly in calorimeters with high granularity. Point clouds preserve all of the information of the original simulation, more naturally deal with sparse datasets, and can be implemented with more compact models and data files. In this work, two state-of-the-art score based models are trained on the same set of calorimeter simulation and directly compared.

View on arXiv
Comments on this paper