ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.06263
25
8

On the hierarchical Bayesian modelling of frequency response functions

12 July 2023
T. Dardeno
K. Worden
N. Dervilis
Robin S. Mills
L. Bull
ArXivPDFHTML
Abstract

For situations that may benefit from information sharing among datasets, e.g., population-based SHM of similar structures, the hierarchical Bayesian approach provides a useful modelling structure. Hierarchical Bayesian models learn statistical distributions at the population (or parent) and the domain levels simultaneously, to bolster statistical strength among the parameters. As a result, variance is reduced among the parameter estimates, particularly when data are limited. In this paper, a combined probabilistic FRF model is developed for a small population of nominally-identical helicopter blades, using a hierarchical Bayesian structure, to support information transfer in the context of sparse data. The modelling approach is also demonstrated in a traditional SHM context, for a single helicopter blade exposed to varying temperatures, to show how the inclusion of physics-based knowledge can improve generalisation beyond the training data, in the context of scarce data. These models address critical challenges in SHM, by accommodating benign variations that present as differences in the underlying dynamics, while also considering (and utilising), the similarities among the domains.

View on arXiv
Comments on this paper