ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.07107
23
13

Graph Positional and Structural Encoder

14 July 2023
Semih Cantürk
Renming Liu
Olivier Lapointe-Gagné
Vincent Létourneau
Guy Wolf
Dominique Beaini
Ladislav Rampášek
ArXivPDFHTML
Abstract

Positional and structural encodings (PSE) enable better identifiability of nodes within a graph, rendering them essential tools for empowering modern GNNs, and in particular graph Transformers. However, designing PSEs that work optimally for all graph prediction tasks is a challenging and unsolved problem. Here, we present the Graph Positional and Structural Encoder (GPSE), the first-ever graph encoder designed to capture rich PSE representations for augmenting any GNN. GPSE learns an efficient common latent representation for multiple PSEs, and is highly transferable: The encoder trained on a particular graph dataset can be used effectively on datasets drawn from markedly different distributions and modalities. We show that across a wide range of benchmarks, GPSE-enhanced models can significantly outperform those that employ explicitly computed PSEs, and at least match their performance in others. Our results pave the way for the development of foundational pre-trained graph encoders for extracting positional and structural information, and highlight their potential as a more powerful and efficient alternative to explicitly computed PSEs and existing self-supervised pre-training approaches. Our framework and pre-trained models are publicly available at https://github.com/G-Taxonomy-Workgroup/GPSE. For convenience, GPSE has also been integrated into the PyG library to facilitate downstream applications.

View on arXiv
Comments on this paper