ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.07466
53
1
v1v2 (latest)

Comparing Scale Parameter Estimators for Gaussian Process Regression: Cross Validation and Maximum Likelihood

14 July 2023
Masha Naslidnyk
Motonobu Kanagawa
Toni Karvonen
Maren Mahsereci
    GP
ArXiv (abs)PDFHTML
Abstract

Gaussian process (GP) regression is a Bayesian nonparametric method for regression and interpolation, offering a principled way of quantifying the uncertainties of predicted function values. For the quantified uncertainties to be well-calibrated, however, the covariance kernel of the GP prior has to be carefully selected. In this paper, we theoretically compare two methods for choosing the kernel in GP regression: cross-validation and maximum likelihood estimation. Focusing on the scale-parameter estimation of a Brownian motion kernel in the noiseless setting, we prove that cross-validation can yield asymptotically well-calibrated credible intervals for a broader class of ground-truth functions than maximum likelihood estimation, suggesting an advantage of the former over the latter.

View on arXiv
Comments on this paper