ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.07528
14
3

PatchSorter: A High Throughput Deep Learning Digital Pathology Tool for Object Labeling

13 July 2023
Cedric E Walker
Tasneem Talawalla
R. Toth
Akhil Ambekar
Kien Rea
Oswin Chamian
Fan Fan
S. Berezowska
S. Rottenberg
A. Madabhushi
M. Maillard
L. Barisoni
H. Horlings
A. Janowczyk
ArXivPDFHTML
Abstract

The discovery of patterns associated with diagnosis, prognosis, and therapy response in digital pathology images often requires intractable labeling of large quantities of histological objects. Here we release an open-source labeling tool, PatchSorter, which integrates deep learning with an intuitive web interface. Using >100,000 objects, we demonstrate a >7x improvement in labels per second over unaided labeling, with minimal impact on labeling accuracy, thus enabling high-throughput labeling of large datasets.

View on arXiv
Comments on this paper