ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.08929
18
7
v1v2v3 (latest)

On-the-fly machine learning for parametrization of the effective Hamiltonian

18 July 2023
Xin-Dong Ma
Hongying Chen
Ri He
Zhanbo Yu
ArXiv (abs)PDFHTML
Abstract

The first-principles-based effective Hamiltonian is widely used to predict and simulate the properties of ferroelectrics and relaxor ferroelectrics. However, the parametrization method of the effective Hamiltonian is complicated and hardly can resolve the systems with complex interactions and/or complex components. Here, we developed an on-the-fly machine learning approach to parametrize the effective Hamiltonian based on Bayesian linear regression. The parametrization is completed in molecular dynamics simulations, with the energy, forces and stress predicted at each step along with their uncertainties. First-principles calculations are executed when the uncertainties are large to retrain the parameters. This approach provides a universal and automatic way to compute the effective Hamiltonian parameters for any considered systems including complex systems which previous methods can not handle. BaTiO3 and Pb(Sc,Ta)O3 are taken as examples to show the accurateness of this approach comparing with conventional first-principles parametrization method.

View on arXiv
Comments on this paper