11
11

No distributed quantum advantage for approximate graph coloring

Abstract

We give an almost complete characterization of the hardness of cc-coloring χ\chi-chromatic graphs with distributed algorithms, for a wide range of models of distributed computing. In particular, we show that these problems do not admit any distributed quantum advantage. To do that: 1) We give a new distributed algorithm that finds a cc-coloring in χ\chi-chromatic graphs in O~(n1α)\tilde{\mathcal{O}}(n^{\frac{1}{\alpha}}) rounds, with α=c1χ1\alpha = \bigl\lfloor\frac{c-1}{\chi - 1}\bigr\rfloor. 2) We prove that any distributed algorithm for this problem requires Ω(n1α)\Omega(n^{\frac{1}{\alpha}}) rounds. Our upper bound holds in the classical, deterministic LOCAL model, while the near-matching lower bound holds in the non-signaling model. This model, introduced by Arfaoui and Fraigniaud in 2014, captures all models of distributed graph algorithms that obey physical causality; this includes not only classical deterministic LOCAL and randomized LOCAL but also quantum-LOCAL, even with a pre-shared quantum state. We also show that similar arguments can be used to prove that, e.g., 3-coloring 2-dimensional grids or cc-coloring trees remain hard problems even for the non-signaling model, and in particular do not admit any quantum advantage. Our lower-bound arguments are purely graph-theoretic at heart; no background on quantum information theory is needed to establish the proofs.

View on arXiv
Comments on this paper