ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.11254
13
2

An In-Depth Evaluation of Federated Learning on Biomedical Natural Language Processing

20 July 2023
Le Peng
Gaoxiang Luo
Sicheng Zhou
Jiandong Chen
Rui Zhang
Zi-Cheng Xu
Ju Sun
ArXivPDFHTML
Abstract

Language models (LMs) such as BERT and GPT have revolutionized natural language processing (NLP). However, the medical field faces challenges in training LMs due to limited data access and privacy constraints imposed by regulations like the Health Insurance Portability and Accountability Act (HIPPA) and the General Data Protection Regulation (GDPR). Federated learning (FL) offers a decentralized solution that enables collaborative learning while ensuring data privacy. In this study, we evaluated FL on 2 biomedical NLP tasks encompassing 8 corpora using 6 LMs. Our results show that: 1) FL models consistently outperformed models trained on individual clients' data and sometimes performed comparably with models trained with polled data; 2) with the fixed number of total data, FL models training with more clients produced inferior performance but pre-trained transformer-based models exhibited great resilience. 3) FL models significantly outperformed large language models using zero-/one-shot learning and offered lightning inference speed.

View on arXiv
Comments on this paper