ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.11476
16
1

Data-driven dual-loop control for platooning mixed human-driven and automated vehicles

21 July 2023
Jianglin Lan
ArXivPDFHTML
Abstract

This paper considers controlling automated vehicles (AVs) to form a platoon with human-driven vehicles (HVs) under consideration of unknown HV model parameters and propulsion time constants. The proposed design is a data-driven dual-loop control strategy for the ego AVs, where the inner loop controller ensures platoon stability and the outer loop controller keeps a safe inter-vehicular spacing under control input limits. The inner loop controller is a constant-gain state feedback controller solved from a semidefinite program (SDP) using the online collected data of platooning errors. The outer loop is a model predictive control (MPC) that embeds a data-driven internal model to predict the future platooning error evolution. The proposed design is evaluated on a mixed platoon with a representative aggressive reference velocity profile, the SFTP-US06 Drive Cycle. The results confirm efficacy of the design and its advantages over the existing single loop data-driven MPC in terms of platoon stability and computational cost.

View on arXiv
Comments on this paper