ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.13621
17
1

Scaling up machine learning-based chemical plant simulation: A method for fine-tuning a model to induce stable fixed points

25 July 2023
Malte Esders
G. A. Ramirez
M. Gastegger
S. Samal
ArXivPDFHTML
Abstract

Idealized first-principles models of chemical plants can be inaccurate. An alternative is to fit a Machine Learning (ML) model directly to plant sensor data. We use a structured approach: Each unit within the plant gets represented by one ML model. After fitting the models to the data, the models are connected into a flowsheet-like directed graph. We find that for smaller plants, this approach works well, but for larger plants, the complex dynamics arising from large and nested cycles in the flowsheet lead to instabilities in the solver during model initialization. We show that a high accuracy of the single-unit models is not enough: The gradient can point in unexpected directions, which prevents the solver from converging to the correct stationary state. To address this problem, we present a way to fine-tune ML models such that initialization, even with very simple solvers, becomes robust.

View on arXiv
Comments on this paper