ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.13709
58
0
v1v2v3v4v5 (latest)

Deep Bradley-Terry Rating: Estimate Properties Without Metric of Unseen Items

24 July 2023
Satoru Fujii
ArXiv (abs)PDFHTML
Abstract

Many properties in the real world, such as desirability or strength in competitive environment, can't be directly observed, which makes them difficult to evaluate. To deal with this challenging problem, prior works have primarily focused on estimating those properties of known items, especially the strength of sports players, only of those who appears in paired comparison dataset. In this paper, we introduce Deep Bradley-Terry Rating (DBTR), a novel ML framework to evaluate any properties of unknown items, not necessarily present in the training data. Our method seamlessly integrates traditional Bradley-Terry model with a neural network structure. We also generalizes this architecture further for asymmetric environment with unfairness, which is much more common in real world settings. In our experimental analysis, DBTR successfully learned desired quantification of those properties.

View on arXiv
Comments on this paper