15
2

Set-Membership Inference Attacks using Data Watermarking

Abstract

In this work, we propose a set-membership inference attack for generative models using deep image watermarking techniques. In particular, we demonstrate how conditional sampling from a generative model can reveal the watermark that was injected into parts of the training data. Our empirical results demonstrate that the proposed watermarking technique is a principled approach for detecting the non-consensual use of image data in training generative models.

View on arXiv
Comments on this paper