ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.16189
15
1

Stable Adam Optimization for 16-bit Neural Networks Training

30 July 2023
Juyoung Yun
ArXivPDFHTML
Abstract

In this research, we address critical concerns related to the numerical instability observed in 16-bit computations of machine learning models. Such instability, particularly when employing popular optimization algorithms like Adam, often leads to unstable training of deep neural networks. This not only disrupts the learning process but also poses significant challenges in deploying dependable models in real-world applications. Our investigation identifies the epsilon hyperparameter as the primary source of this instability. A nuanced exploration reveals that subtle adjustments to epsilon within 16-bit computations can enhance the numerical stability of Adam, enabling more stable training of 16-bit neural networks. We propose a novel, dependable approach that leverages updates from the Adam optimizer to bolster the stability of the learning process. Our contributions provide deeper insights into optimization challenges in low-precision computations and offer solutions to ensure the stability of deep neural network training, paving the way for their dependable use in various applications.

View on arXiv
Comments on this paper