ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.04398
19
0

Character-level NMT and language similarity

8 August 2023
Josef Jon
Ondrej Bojar
ArXivPDFHTML
Abstract

We explore the effectiveness of character-level neural machine translation using Transformer architecture for various levels of language similarity and size of the training dataset on translation between Czech and Croatian, German, Hungarian, Slovak, and Spanish. We evaluate the models using automatic MT metrics and show that translation between similar languages benefits from character-level input segmentation, while for less related languages, character-level vanilla Transformer-base often lags behind subword-level segmentation. We confirm previous findings that it is possible to close the gap by finetuning the already trained subword-level models to character-level.

View on arXiv
Comments on this paper