ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.04620
17
7

Multiclass Online Learnability under Bandit Feedback

8 August 2023
A. Raman
Vinod Raman
Unique Subedi
Idan Mehalel
Ambuj Tewari
ArXivPDFHTML
Abstract

We study online multiclass classification under bandit feedback. We extend the results of Daniely and Helbertal [2013] by showing that the finiteness of the Bandit Littlestone dimension is necessary and sufficient for bandit online learnability even when the label space is unbounded. Moreover, we show that, unlike the full-information setting, sequential uniform convergence is necessary but not sufficient for bandit online learnability. Our result complements the recent work by Hanneke, Moran, Raman, Subedi, and Tewari [2023] who show that the Littlestone dimension characterizes online multiclass learnability in the full-information setting even when the label space is unbounded.

View on arXiv
Comments on this paper