ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.05864
11
36

The Multi-modality Cell Segmentation Challenge: Towards Universal Solutions

10 August 2023
Jun Ma
Ronald Xie
Shamini Ayyadhury
Cheng Ge
Anubha Gupta
Ritu Gupta
Song Gu
Yao Zhang
Gihun Lee
Joonkee Kim
Wei Lou
Haofeng Li
Eric Upschulte
Timo Dickscheid
José Guilherme de Almeida
Yixin Wang
Li-Jun Han
Xin Yang
Marco Labagnara
Zhuoshi Li
Maxime Scheder
S. Rahi
Carly Kempster
A. Pollitt
L. Espinosa
T. Mignot
J. Middeke
Jan-Niklas Eckardt
Wangkai Li
Zhaoyang Li
Xiao-Wei Cai
Bizhe Bai
N. Greenwald
D. V. Valen
Erin Weisbart
Beth A. Cimini
C. Zuo
Oscar Bruck
Gary D. Bader
Bohui Wang
    VLM
ArXivPDFHTML
Abstract

Cell segmentation is a critical step for quantitative single-cell analysis in microscopy images. Existing cell segmentation methods are often tailored to specific modalities or require manual interventions to specify hyper-parameters in different experimental settings. Here, we present a multi-modality cell segmentation benchmark, comprising over 1500 labeled images derived from more than 50 diverse biological experiments. The top participants developed a Transformer-based deep-learning algorithm that not only exceeds existing methods but can also be applied to diverse microscopy images across imaging platforms and tissue types without manual parameter adjustments. This benchmark and the improved algorithm offer promising avenues for more accurate and versatile cell analysis in microscopy imaging.

View on arXiv
Comments on this paper