ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.08574
18
0
v1v2 (latest)

A Comparative Analysis of the Capabilities of Nature-inspired Feature Selection Algorithms in Predicting Student Performance

15 August 2023
Thomas Trask
ArXiv (abs)PDFHTML
Abstract

Predicting student performance is key in leveraging effective pre-failure interventions for at-risk students. In this paper, I have analyzed the relative performance of a suite of 12 nature-inspired algorithms when used to predict student performance across 3 datasets consisting of instance-based clickstream data, intra-course single-course performance, and performance when taking multiple courses simultaneously. I found that, for all datasets, leveraging an ensemble approach using NIAs for feature selection and traditional ML algorithms for classification increased predictive accuracy while also reducing feature set size by 2/3.

View on arXiv
Comments on this paper