ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.09960
11
6

Towards Self-Adaptive Machine Learning-Enabled Systems Through QoS-Aware Model Switching

19 August 2023
Shubham Shantanu Kulkarni
Arya Marda
Karthik Vaidhyanathan
ArXivPDFHTML
Abstract

Machine Learning (ML), particularly deep learning, has seen vast advancements, leading to the rise of Machine Learning-Enabled Systems (MLS). However, numerous software engineering challenges persist in propelling these MLS into production, largely due to various run-time uncertainties that impact the overall Quality of Service (QoS). These uncertainties emanate from ML models, software components, and environmental factors. Self-adaptation techniques present potential in managing run-time uncertainties, but their application in MLS remains largely unexplored. As a solution, we propose the concept of a Machine Learning Model Balancer, focusing on managing uncertainties related to ML models by using multiple models. Subsequently, we introduce AdaMLS, a novel self-adaptation approach that leverages this concept and extends the traditional MAPE-K loop for continuous MLS adaptation. AdaMLS employs lightweight unsupervised learning for dynamic model switching, thereby ensuring consistent QoS. Through a self-adaptive object detection system prototype, we demonstrate AdaMLS's effectiveness in balancing system and model performance. Preliminary results suggest AdaMLS surpasses naive and single state-of-the-art models in QoS guarantees, heralding the advancement towards self-adaptive MLS with optimal QoS in dynamic environments.

View on arXiv
Comments on this paper