ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.09977
19
4

Whether you can locate or not? Interactive Referring Expression Generation

19 August 2023
Fulong Ye
Yuxing Long
Fangxiang Feng
Xiaojie Wang
ArXivPDFHTML
Abstract

Referring Expression Generation (REG) aims to generate unambiguous Referring Expressions (REs) for objects in a visual scene, with a dual task of Referring Expression Comprehension (REC) to locate the referred object. Existing methods construct REG models independently by using only the REs as ground truth for model training, without considering the potential interaction between REG and REC models. In this paper, we propose an Interactive REG (IREG) model that can interact with a real REC model, utilizing signals indicating whether the object is located and the visual region located by the REC model to gradually modify REs. Our experimental results on three RE benchmark datasets, RefCOCO, RefCOCO+, and RefCOCOg show that IREG outperforms previous state-of-the-art methods on popular evaluation metrics. Furthermore, a human evaluation shows that IREG generates better REs with the capability of interaction.

View on arXiv
Comments on this paper