ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.10051
19
8

The Snowflake Hypothesis: Training Deep GNN with One Node One Receptive field

19 August 2023
Kun Wang
Guohao Li
Shilong Wang
Guibin Zhang
K. Wang
Yang You
Xiaojiang Peng
Yuxuan Liang
Yang Wang
ArXivPDFHTML
Abstract

Despite Graph Neural Networks demonstrating considerable promise in graph representation learning tasks, GNNs predominantly face significant issues with over-fitting and over-smoothing as they go deeper as models of computer vision realm. In this work, we conduct a systematic study of deeper GNN research trajectories. Our findings indicate that the current success of deep GNNs primarily stems from (I) the adoption of innovations from CNNs, such as residual/skip connections, or (II) the tailor-made aggregation algorithms like DropEdge. However, these algorithms often lack intrinsic interpretability and indiscriminately treat all nodes within a given layer in a similar manner, thereby failing to capture the nuanced differences among various nodes. To this end, we introduce the Snowflake Hypothesis -- a novel paradigm underpinning the concept of ``one node, one receptive field''. The hypothesis draws inspiration from the unique and individualistic patterns of each snowflake, proposing a corresponding uniqueness in the receptive fields of nodes in the GNNs. We employ the simplest gradient and node-level cosine distance as guiding principles to regulate the aggregation depth for each node, and conduct comprehensive experiments including: (1) different training schemes; (2) various shallow and deep GNN backbones, and (3) various numbers of layers (8, 16, 32, 64) on multiple benchmarks (six graphs including dense graphs with millions of nodes); (4) compare with different aggregation strategies. The observational results demonstrate that our hypothesis can serve as a universal operator for a range of tasks, and it displays tremendous potential on deep GNNs. It can be applied to various GNN frameworks, enhancing its effectiveness when operating in-depth, and guiding the selection of the optimal network depth in an explainable and generalizable way.

View on arXiv
Comments on this paper