ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.12554
16
0

Deep Reinforcement Learning-driven Cross-Community Energy Interaction Optimal Scheduling

24 August 2023
Yang Li
Wenjie Ma
Fanjin Bu
Zhen Yang
Bin Wang
Meng Han
ArXivPDFHTML
Abstract

In order to coordinate energy interactions among various communities and energy conversions among multi-energy subsystems within the multi-community integrated energy system under uncertain conditions, and achieve overall optimization and scheduling of the comprehensive energy system, this paper proposes a comprehensive scheduling model that utilizes a multi-agent deep reinforcement learning algorithm to learn load characteristics of different communities and make decisions based on this knowledge. In this model, the scheduling problem of the integrated energy system is transformed into a Markov decision process and solved using a data-driven deep reinforcement learning algorithm, which avoids the need for modeling complex energy coupling relationships between multi-communities and multi-energy subsystems. The simulation results show that the proposed method effectively captures the load characteristics of different communities and utilizes their complementary features to coordinate reasonable energy interactions among them. This leads to a reduction in wind curtailment rate from 16.3% to 0% and lowers the overall operating cost by 5445.6 Yuan, demonstrating significant economic and environmental benefits.

View on arXiv
Comments on this paper