ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.12947
50
3
v1v2v3 (latest)

Counting Distinct Elements Under Person-Level Differential Privacy

24 August 2023
Alexander Knop
Thomas Steinke
ArXiv (abs)PDFHTML
Abstract

We study the problem of counting the number of distinct elements in a dataset subject to the constraint of differential privacy. We consider the challenging setting of person-level DP (a.k.a. user-level DP) where each person may contribute an unbounded number of items and hence the sensitivity is unbounded. Our approach is to compute a bounded-sensitivity version of this query, which reduces to solving a max-flow problem. The sensitivity bound is optimized to balance the noise we must add to privatize the answer against the error of the approximation of the bounded-sensitivity query to the true number of unique elements.

View on arXiv
Comments on this paper