ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.14034
16
35

Confucius: Iterative Tool Learning from Introspection Feedback by Easy-to-Difficult Curriculum

27 August 2023
Shen Gao
Zhengliang Shi
Minghang Zhu
Bowen Fang
Xin Xin
Pengjie Ren
Zhumin Chen
Jun Ma
Zhaochun Ren
    LLMAG
    CLL
ArXivPDFHTML
Abstract

Augmenting large language models (LLMs) with external tools has emerged as a promising approach to extending the capability of LLMs. Although some works employ open-source LLMs for the tool learning task, most of them are trained in a controlled environment in which LLMs only learn to execute the human-provided tools. However, selecting proper tools from the large toolset is also a crucial ability for the tool learning model to be applied in real-world applications. Existing methods usually directly employ self-instruction methods to train the model, which ignores differences in tool complexity. In this paper, we propose the Confucius, a novel tool learning framework to train LLM to use complicated tools in real-world scenarios, which contains two main phases: (1) We first propose a multi-stage learning method to teach the LLM to use various tools from an easy-to-difficult curriculum; (2) thenceforth, we propose the Iterative Self-instruct from Introspective Feedback (ISIF) to dynamically construct the dataset to improve the ability to use the complicated tool. Extensive experiments conducted on both controlled and real-world settings demonstrate the superiority of our tool learning framework in the real-world application scenarios compared to both tuning-free (e.g. ChatGPT, Claude) and tuning-based baselines (e.g. GPT4Tools).

View on arXiv
Comments on this paper