ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.14063
13
5

Anomalous Sound Detection Using Self-Attention-Based Frequency Pattern Analysis of Machine Sounds

27 August 2023
Hejing Zhang
Jian Guan
Qiaoxi Zhu
Feiyang Xiao
Youde Liu
ArXivPDFHTML
Abstract

Different machines can exhibit diverse frequency patterns in their emitted sound. This feature has been recently explored in anomaly sound detection and reached state-of-the-art performance. However, existing methods rely on the manual or empirical determination of the frequency filter by observing the effective frequency range in the training data, which may be impractical for general application. This paper proposes an anomalous sound detection method using self-attention-based frequency pattern analysis and spectral-temporal information fusion. Our experiments demonstrate that the self-attention module automatically and adaptively analyses the effective frequencies of a machine sound and enhances that information in the spectral feature representation. With spectral-temporal information fusion, the obtained audio feature eventually improves the anomaly detection performance on the DCASE 2020 Challenge Task 2 dataset.

View on arXiv
Comments on this paper