ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.14981
70
4
v1v2 (latest)

Sub-universal variational circuits for combinatorial optimization problems

29 August 2023
Gal Weitz
Lirande Pira
C. Ferrie
J. Combes
ArXiv (abs)PDFHTML
Main:11 Pages
7 Figures
5 Tables
Abstract

Quantum variational circuits have gained significant attention due to their applications in the quantum approximate optimization algorithm and quantum machine learning research. This work introduces a novel class of classical probabilistic circuits designed for generating approximate solutions to combinatorial optimization problems constructed using two-bit stochastic matrices. Through a numerical study, we investigate the performance of our proposed variational circuits in solving the Max-Cut problem on various graphs of increasing sizes. Our classical algorithm demonstrates improved performance for several graph types to the quantum approximate optimization algorithm. Our findings suggest that evaluating the performance of quantum variational circuits against variational circuits with sub-universal gate sets is a valuable benchmark for identifying areas where quantum variational circuits can excel.

View on arXiv
Comments on this paper