ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.16599
18
1

Using machine learning to understand causal relationships between urban form and travel CO2 emissions across continents

31 August 2023
Felix Wagner
Florian Nachtigall
Lukas Franken
Nikola Milojevic-Dupont
R. Pereira
Nicolas Koch
J. Runge
Marta C. González
F. Creutzig
    AI4CE
ArXivPDFHTML
Abstract

Climate change mitigation in urban mobility requires policies reconfiguring urban form to increase accessibility and facilitate low-carbon modes of transport. However, current policy research has insufficiently assessed urban form effects on car travel at three levels: (1) Causality -- Can causality be established beyond theoretical and correlation-based analyses? (2) Generalizability -- Do relationships hold across different cities and world regions? (3) Context specificity -- How do relationships vary across neighborhoods of a city? Here, we address all three gaps via causal graph discovery and explainable machine learning to detect urban form effects on intra-city car travel, based on mobility data of six cities across three continents. We find significant causal effects of urban form on trip emissions and inter-feature effects, which had been neglected in previous work. Our results demonstrate that destination accessibility matters most overall, while low density and low connectivity also sharply increase CO2_22​ emissions. These general trends are similar across cities but we find idiosyncratic effects that can lead to substantially different recommendations. In more monocentric cities, we identify spatial corridors -- about 10--50 km from the city center -- where subcenter-oriented development is more relevant than increased access to the main center. Our work demonstrates a novel application of machine learning that enables new research addressing the needs of causality, generalizability, and contextual specificity for scaling evidence-based urban climate solutions.

View on arXiv
Comments on this paper