ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.00230
12
0

JoTR: A Joint Transformer and Reinforcement Learning Framework for Dialog Policy Learning

1 September 2023
Wai-Chung Kwan
Huimin Wang
Hongru Wang
Zezhong Wang
Xian Wu
Yefeng Zheng
Kam-Fai Wong
    OffRL
ArXivPDFHTML
Abstract

Dialogue policy learning (DPL) is a crucial component of dialogue modelling. Its primary role is to determine the appropriate abstract response, commonly referred to as the "dialogue action". Traditional DPL methodologies have treated this as a sequential decision problem, using pre-defined action candidates extracted from a corpus. However, these incomplete candidates can significantly limit the diversity of responses and pose challenges when dealing with edge cases, which are scenarios that occur only at extreme operating parameters. To address these limitations, we introduce a novel framework, JoTR. This framework is unique as it leverages a text-to-text Transformer-based model to generate flexible dialogue actions. Unlike traditional methods, JoTR formulates a word-level policy that allows for a more dynamic and adaptable dialogue action generation, without the need for any action templates. This setting enhances the diversity of responses and improves the system's ability to handle edge cases effectively. In addition, JoTR employs reinforcement learning with a reward-shaping mechanism to efficiently finetune the word-level dialogue policy, which allows the model to learn from its interactions, improving its performance over time. We conducted an extensive evaluation of JoTR to assess its effectiveness. Our extensive evaluation shows that JoTR achieves state-of-the-art performance on two benchmark dialogue modelling tasks, as assessed by both user simulators and human evaluators.

View on arXiv
Comments on this paper