ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.02052
8
11

Towards Individual and Multistakeholder Fairness in Tourism Recommender Systems

5 September 2023
Ashmi Banerjee
Paromita Banik
Wolfgang Wörndl
ArXivPDFHTML
Abstract

This position paper summarizes our published review on individual and multistakeholder fairness in Tourism Recommender Systems (TRS). Recently, there has been growing attention to fairness considerations in recommender systems (RS). It has been acknowledged in research that fairness in RS is often closely tied to the presence of multiple stakeholders, such as end users, item providers, and platforms, as it raises concerns for the fair treatment of all parties involved. Hence, fairness in RS is a multi-faceted concept that requires consideration of the perspectives and needs of the different stakeholders to ensure fair outcomes for them. However, there may often be instances where achieving the goals of one stakeholder could conflict with those of another, resulting in trade-offs. In this paper, we emphasized addressing the unique challenges of ensuring fairness in RS within the tourism domain. We aimed to discuss potential strategies for mitigating the aforementioned challenges and examine the applicability of solutions from other domains to tackle fairness issues in tourism. By exploring cross-domain approaches and strategies for incorporating S-Fairness, we can uncover valuable insights and determine how these solutions can be adapted and implemented effectively in the context of tourism to enhance fairness in RS.

View on arXiv
Comments on this paper