ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.03702
33
6

DiffDefense: Defending against Adversarial Attacks via Diffusion Models

7 September 2023
Hondamunige Prasanna Silva
Lorenzo Seidenari
A. Bimbo
    DiffM
ArXivPDFHTML
Abstract

This paper presents a novel reconstruction method that leverages Diffusion Models to protect machine learning classifiers against adversarial attacks, all without requiring any modifications to the classifiers themselves. The susceptibility of machine learning models to minor input perturbations renders them vulnerable to adversarial attacks. While diffusion-based methods are typically disregarded for adversarial defense due to their slow reverse process, this paper demonstrates that our proposed method offers robustness against adversarial threats while preserving clean accuracy, speed, and plug-and-play compatibility. Code at: https://github.com/HondamunigePrasannaSilva/DiffDefence.

View on arXiv
Comments on this paper