ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.04510
22
0

Decreasing the Computing Time of Bayesian Optimization using Generalizable Memory Pruning

8 September 2023
Alexander E. Siemenn
Tonio Buonassisi
ArXivPDFHTML
Abstract

Bayesian optimization (BO) suffers from long computing times when processing highly-dimensional or large data sets. These long computing times are a result of the Gaussian process surrogate model having a polynomial time complexity with the number of experiments. Running BO on high-dimensional or massive data sets becomes intractable due to this time complexity scaling, in turn, hindering experimentation. Alternative surrogate models have been developed to reduce the computing utilization of the BO procedure, however, these methods require mathematical alteration of the inherit surrogate function, pigeonholing use into only that function. In this paper, we demonstrate a generalizable BO wrapper of memory pruning and bounded optimization, capable of being used with any surrogate model and acquisition function. Using this memory pruning approach, we show a decrease in wall-clock computing times per experiment of BO from a polynomially increasing pattern to a sawtooth pattern that has a non-increasing trend without sacrificing convergence performance. Furthermore, we illustrate the generalizability of the approach across two unique data sets, two unique surrogate models, and four unique acquisition functions. All model implementations are run on the MIT Supercloud state-of-the-art computing hardware.

View on arXiv
Comments on this paper