ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.04615
222
4
v1v2 (latest)

VDFD: Multi-Agent Value Decomposition Framework with Disentangled World Model

8 September 2023
Zhizun Wang
David Meger
    DRL
ArXiv (abs)PDFHTMLGithub (3893★)
Main:16 Pages
24 Figures
Bibliography:7 Pages
13 Tables
Appendix:20 Pages
Abstract

In this paper, we propose a novel model-based multi-agent reinforcement learning approach named Value Decomposition Framework with Disentangled World Model to address the challenge of achieving a common goal of multiple agents interacting in the same environment with reduced sample complexity. Due to scalability and non-stationarity problems posed by multi-agent systems, model-free methods rely on a considerable number of samples for training. In contrast, we use a modularized world model, composed of action-conditioned, action-free, and static branches, to unravel the complicated environment dynamics. Our model produces imagined outcomes based on past experience, without sampling directly from the real environment. We employ variational auto-encoders and variational graph auto-encoders to learn the latent representations for the world model, which is merged with a value-based framework to predict the joint action-value function and optimize the overall training objective. Experimental results on StarCraft II micro-management, Multi-Agent MuJoCo, and Level-Based Foraging challenges demonstrate that our method achieves high sample efficiency and exhibits superior performance compared to other baselines across a wide range of multi-agent learning tasks.

View on arXiv
Comments on this paper