ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.07809
21
7

Communication Efficient Private Federated Learning Using Dithering

14 September 2023
Burak Hasircioglu
Deniz Gunduz
    FedML
ArXivPDFHTML
Abstract

The task of preserving privacy while ensuring efficient communication is a fundamental challenge in federated learning. In this work, we tackle this challenge in the trusted aggregator model, and propose a solution that achieves both objectives simultaneously. We show that employing a quantization scheme based on subtractive dithering at the clients can effectively replicate the normal noise addition process at the aggregator. This implies that we can guarantee the same level of differential privacy against other clients while substantially reducing the amount of communication required, as opposed to transmitting full precision gradients and using central noise addition. We also experimentally demonstrate that the accuracy of our proposed approach matches that of the full precision gradient method.

View on arXiv
Comments on this paper