ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.10278
16
0

Parameter-Varying Koopman Operator for Nonlinear System Modeling and Control

19 September 2023
Changyu Lee
Kiyong Park
Jinwhan Kim
ArXiv (abs)PDFHTML
Abstract

This paper proposes a novel approach for modeling and controlling nonlinear systems with varying parameters. The approach introduces the use of a parameter-varying Koopman operator (PVKO) in a lifted space, which provides an efficient way to understand system behavior and design control algorithms that account for underlying dynamics and changing parameters. The PVKO builds on a conventional Koopman model by incorporating local time-invariant linear systems through interpolation within the lifted space. This paper outlines a procedure for identifying the PVKO and designing a model predictive control using the identified PVKO model. Simulation results demonstrate that the proposed approach improves model accuracy and enables predictions based on future parameter information. The feasibility and stability of the proposed control approach are analyzed, and their effectiveness is demonstrated through simulation.

View on arXiv
Comments on this paper