ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.13398
13
0

A mirror-Unet architecture for PET/CT lesion segmentation

23 September 2023
Yamila Rotstein Habarnau
Mauro Namías
ArXivPDFHTML
Abstract

Automatic lesion detection and segmentation from [18{}^{18}18F]FDG PET/CT scans is a challenging task, due to the diversity of shapes, sizes, FDG uptake and location they may present, besides the fact that physiological uptake is also present on healthy tissues. In this work, we propose a deep learning method aimed at the segmentation of oncologic lesions, based on a combination of two UNet-3D branches. First, one of the network's branches is trained to segment a group of tissues from CT images. The other branch is trained to segment the lesions from PET images, combining on the bottleneck the embedded information of CT branch, already trained. We trained and validated our networks on the AutoPET MICCAI 2023 Challenge dataset. Our code is available at: https://github.com/yrotstein/AutoPET2023_Mv1.

View on arXiv
Comments on this paper