ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.13414
11
22

State-space Models with Layer-wise Nonlinearity are Universal Approximators with Exponential Decaying Memory

23 September 2023
Shida Wang
Beichen Xue
ArXivPDFHTML
Abstract

State-space models have gained popularity in sequence modelling due to their simple and efficient network structures. However, the absence of nonlinear activation along the temporal direction limits the model's capacity. In this paper, we prove that stacking state-space models with layer-wise nonlinear activation is sufficient to approximate any continuous sequence-to-sequence relationship. Our findings demonstrate that the addition of layer-wise nonlinear activation enhances the model's capacity to learn complex sequence patterns. Meanwhile, it can be seen both theoretically and empirically that the state-space models do not fundamentally resolve the issue of exponential decaying memory. Theoretical results are justified by numerical verifications.

View on arXiv
Comments on this paper