ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.14052
18
3

Single Image Test-Time Adaptation for Segmentation

25 September 2023
Klara Janouskova
T. Shor
Chaim Baskin
Jirí Matas
    TTA
    OOD
ArXivPDFHTML
Abstract

Test-Time Adaptation (TTA) methods improve the robustness of deep neural networks to domain shift on a variety of tasks such as image classification or segmentation. This work explores adapting segmentation models to a single unlabelled image with no other data available at test-time. In particular, this work focuses on adaptation by optimizing self-supervised losses at test-time. Multiple baselines based on different principles are evaluated under diverse conditions and a novel adversarial training is introduced for adaptation with mask refinement. Our additions to the baselines result in a 3.51 and 3.28 % increase over non-adapted baselines, without these improvements, the increase would be 1.7 and 2.16 % only.

View on arXiv
Comments on this paper