ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.14502
9
2

Uncertainty Aware Deep Learning for Particle Accelerators

25 September 2023
Kishansingh Rajput
Malachi Schram
Karthik Somayaji
ArXivPDFHTML
Abstract

Standard deep learning models for classification and regression applications are ideal for capturing complex system dynamics. However, their predictions can be arbitrarily inaccurate when the input samples are not similar to the training data. Implementation of distance aware uncertainty estimation can be used to detect these scenarios and provide a level of confidence associated with their predictions. In this paper, we present results from using Deep Gaussian Process Approximation (DGPA) methods for errant beam prediction at Spallation Neutron Source (SNS) accelerator (classification) and we provide an uncertainty aware surrogate model for the Fermi National Accelerator Lab (FNAL) Booster Accelerator Complex (regression).

View on arXiv
Comments on this paper