ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.15031
18
2

Nuclear Pleomorphism in Canine Cutaneous Mast Cell Tumors: Comparison of Reproducibility and Prognostic Relevance between Estimates, Manual Morphometry and Algorithmic Morphometry

26 September 2023
A. Haghofer
E. Parlak
A. Bartel
T. Donovan
C. Assenmacher
P. Bolfă
Michael J. Dark
A. Fuchs‐Baumgartinger
Andrea Klang
Kathrin Jäger
R. Klopfleisch
Sophie Merz
Barbara Richter
F. Y. Schulman
H. Janout
J. Ganz
Josef Scharinger
Marc Aubreville
Stephan M. Winkler
M. Kiupel
C. Bertram
ArXivPDFHTML
Abstract

Variation in nuclear size and shape is an important criterion of malignancy for many tumor types; however, categorical estimates by pathologists have poor reproducibility. Measurements of nuclear characteristics (morphometry) can improve reproducibility, but manual methods are time consuming. The aim of this study was to explore the limitations of estimates and develop alternative morphometric solutions for canine cutaneous mast cell tumors (ccMCT). We assessed the following nuclear evaluation methods for measurement accuracy, reproducibility, and prognostic utility: 1) anisokaryosis (karyomegaly) estimates by 11 pathologists; 2) gold standard manual morphometry of at least 100 nuclei; 3) practicable manual morphometry with stratified sampling of 12 nuclei by 9 pathologists; and 4) automated morphometry using a deep learning-based segmentation algorithm. The study dataset comprised 96 ccMCT with available outcome information. The study dataset comprised 96 ccMCT with available outcome information. Inter-rater reproducibility of karyomegaly estimates was low (κ\kappaκ = 0.226), while it was good (ICC = 0.654) for practicable morphometry of the standard deviation (SD) of nuclear size. As compared to gold standard manual morphometry (AUC = 0.839, 95% CI: 0.701 - 0.977), the prognostic value (tumor-specific survival) of SDs of nuclear area for practicable manual morphometry (12 nuclei) and automated morphometry were high with an area under the ROC curve (AUC) of 0.868 (95% CI: 0.737 - 0.991) and 0.943 (95% CI: 0.889 - 0.996), respectively. This study supports the use of manual morphometry with stratified sampling of 12 nuclei and algorithmic morphometry to overcome the poor reproducibility of estimates.

View on arXiv
Comments on this paper