ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.16683
15
26

Controlling the Solo12 Quadruped Robot with Deep Reinforcement Learning

2 August 2023
M. Aractingi
Pierre-Alexandre Léziart
He Cao
Julien Perez
Yuan Yao
Philippe Souères
ArXivPDFHTML
Abstract

Quadruped robots require robust and general locomotion skills to exploit their mobility potential in complex and challenging environments. In this work, we present the first implementation of a robust end-to-end learning-based controller on the Solo12 quadruped. Our method is based on deep reinforcement learning of joint impedance references. The resulting control policies follow a commanded velocity reference while being efficient in its energy consumption, robust and easy to deploy. We detail the learning procedure and method for transfer on the real robot. In our experiments, we show that the Solo12 robot is a suitable open-source platform for research combining learning and control because of the easiness in transferring and deploying learned controllers.

View on arXiv
Comments on this paper