ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.17196
11
1

ResBit: Residual Bit Vector for Categorical Values

29 September 2023
Masane Fuchi
Amar Zanashir
Si-Qing Chen
Tomohiro Takagi
ArXivPDFHTML
Abstract

One-hot vectors, a method for representing discrete/categorical data, are commonly used in machine learning due to their simplicity and intuitiveness. However, the one-hot vectors suffer from a linear increase in dimensionality, posing computational and memory challenges, especially when dealing with datasets containing numerous categories. To address this issue, we propose Residual Bit Vectors (ResBit), a technique for densely representing categorical data. While Analog Bits presents a similar approach, it faces challenges in categorical data generation tasks. ResBit overcomes these limitations, offering a more versatile solution. In our experiments, we focus on tabular data generation, examining the performance across scenarios with varying amounts of categorical data. We verify the acceleration and ensure the maintenance or improvement of performance.

View on arXiv
Comments on this paper