ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.00359
27
5

Improving Cross-dataset Deepfake Detection with Deep Information Decomposition

30 September 2023
Shanmin Yang
Shu Hu
Bin Zhu
Ying Fu
Siwei Lyu
Xi Wu
Xin Wang
ArXivPDFHTML
Abstract

Deepfake technology poses a significant threat to security and social trust. Although existing detection methods have demonstrated high performance in identifying forgeries within datasets using the same techniques for training and testing, they suffer from sharp performance degradation when faced with cross-dataset scenarios where unseen deepfake techniques are tested. To address this challenge, we propose a deep information decomposition (DID) framework in this paper. Unlike most existing deepfake detection methods, our framework prioritizes high-level semantic features over visual artifacts. Specifically, it decomposes facial features into deepfake-related and irrelevant information and optimizes the deepfake information for real/fake discrimination to be independent of other factors. Our approach improves the robustness of deepfake detection against various irrelevant information changes and enhances the generalization ability of the framework to detect unseen forgery methods. Extensive experimental comparisons with existing state-of-the-art detection methods validate the effectiveness and superiority of the DID framework on cross-dataset deepfake detection.

View on arXiv
Comments on this paper