ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.00500
14
0

Self-Supervised Open-Ended Classification with Small Visual Language Models

30 September 2023
Mohammad Mahdi Derakhshani
Ivona Najdenkoska
Cees G. M. Snoek
M. Worring
Yuki M. Asano
    VLM
ArXivPDFHTML
Abstract

We present Self-Context Adaptation (SeCAt), a self-supervised approach that unlocks few-shot abilities for open-ended classification with small visual language models. Our approach imitates image captions in a self-supervised way based on clustering a large pool of images followed by assigning semantically-unrelated names to clusters. By doing so, we construct a training signal consisting of interleaved sequences of image and pseudocaption pairs and a query image, which we denote as the 'self-context' sequence. Based on this signal the model is trained to produce the right pseudo-caption. We demonstrate the performance and flexibility of SeCAt on several multimodal few-shot datasets, spanning various granularities. By using models with approximately 1B parameters we outperform the few-shot abilities of much larger models, such as Frozen and FROMAGe. SeCAt opens new possibilities for research and applications in open-ended few-shot learning that otherwise requires access to large or proprietary models.

View on arXiv
Comments on this paper