ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.02037
17
10

An evaluation of pre-trained models for feature extraction in image classification

3 October 2023
Erick da Silva Puls
M. V. Todescato
J. Carbonera
    CLIP
    VLM
ArXivPDFHTML
Abstract

In recent years, we have witnessed a considerable increase in performance in image classification tasks. This performance improvement is mainly due to the adoption of deep learning techniques. Generally, deep learning techniques demand a large set of annotated data, making it a challenge when applying it to small datasets. In this scenario, transfer learning strategies have become a promising alternative to overcome these issues. This work aims to compare the performance of different pre-trained neural networks for feature extraction in image classification tasks. We evaluated 16 different pre-trained models in four image datasets. Our results demonstrate that the best general performance along the datasets was achieved by CLIP-ViT-B and ViT-H-14, where the CLIP-ResNet50 model had similar performance but with less variability. Therefore, our study provides evidence supporting the choice of models for feature extraction in image classification tasks.

View on arXiv
Comments on this paper