ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.03015
15
10

Efficient-3DiM: Learning a Generalizable Single-image Novel-view Synthesizer in One Day

4 October 2023
Yifan Jiang
Hao Tang
Jen-Hao Rick Chang
Liangchen Song
Zhangyang Wang
Liangliang Cao
    DiffM
ArXivPDFHTML
Abstract

The task of novel view synthesis aims to generate unseen perspectives of an object or scene from a limited set of input images. Nevertheless, synthesizing novel views from a single image still remains a significant challenge in the realm of computer vision. Previous approaches tackle this problem by adopting mesh prediction, multi-plain image construction, or more advanced techniques such as neural radiance fields. Recently, a pre-trained diffusion model that is specifically designed for 2D image synthesis has demonstrated its capability in producing photorealistic novel views, if sufficiently optimized on a 3D finetuning task. Although the fidelity and generalizability are greatly improved, training such a powerful diffusion model requires a vast volume of training data and model parameters, resulting in a notoriously long time and high computational costs. To tackle this issue, we propose Efficient-3DiM, a simple but effective framework to learn a single-image novel-view synthesizer. Motivated by our in-depth analysis of the inference process of diffusion models, we propose several pragmatic strategies to reduce the training overhead to a manageable scale, including a crafted timestep sampling strategy, a superior 3D feature extractor, and an enhanced training scheme. When combined, our framework is able to reduce the total training time from 10 days to less than 1 day, significantly accelerating the training process under the same computational platform (one instance with 8 Nvidia A100 GPUs). Comprehensive experiments are conducted to demonstrate the efficiency and generalizability of our proposed method.

View on arXiv
Comments on this paper