ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.03088
16
2

Physics-Informed Neural Networks for Accelerating Power System State Estimation

4 October 2023
Solon Falas
M. Asprou
Charalambos Konstantinou
Maria K. Michael
ArXivPDFHTML
Abstract

State estimation is the cornerstone of the power system control center since it provides the operating condition of the system in consecutive time intervals. This work investigates the application of physics-informed neural networks (PINNs) for accelerating power systems state estimation in monitoring the operation of power systems. Traditional state estimation techniques often rely on iterative algorithms that can be computationally intensive, particularly for large-scale power systems. In this paper, a novel approach that leverages the inherent physical knowledge of power systems through the integration of PINNs is proposed. By incorporating physical laws as prior knowledge, the proposed method significantly reduces the computational complexity associated with state estimation while maintaining high accuracy. The proposed method achieves up to 11% increase in accuracy, 75% reduction in standard deviation of results, and 30% faster convergence, as demonstrated by comprehensive experiments on the IEEE 14-bus system.

View on arXiv
Comments on this paper