ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.04490
19
4

Generative Diffusion From An Action Principle

6 October 2023
Akhil Premkumar
    DiffM
ArXivPDFHTML
Abstract

Generative diffusion models synthesize new samples by reversing a diffusive process that converts a given data set to generic noise. This is accomplished by training a neural network to match the gradient of the log of the probability distribution of a given data set, also called the score. By casting reverse diffusion as an optimal control problem, we show that score matching can be derived from an action principle, like the ones commonly used in physics. We use this insight to demonstrate the connection between different classes of diffusion models.

View on arXiv
Comments on this paper