ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.04604
10
4

PriViT: Vision Transformers for Fast Private Inference

6 October 2023
Naren Dhyani
Jianqiao Mo
Minsu Cho
Ameya Joshi
Siddharth Garg
Brandon Reagen
Chinmay Hegde
ArXivPDFHTML
Abstract

The Vision Transformer (ViT) architecture has emerged as the backbone of choice for state-of-the-art deep models for computer vision applications. However, ViTs are ill-suited for private inference using secure multi-party computation (MPC) protocols, due to the large number of non-polynomial operations (self-attention, feed-forward rectifiers, layer normalization). We propose PriViT, a gradient based algorithm to selectively "Taylorize" nonlinearities in ViTs while maintaining their prediction accuracy. Our algorithm is conceptually simple, easy to implement, and achieves improved performance over existing approaches for designing MPC-friendly transformer architectures in terms of achieving the Pareto frontier in latency-accuracy. We confirm these improvements via experiments on several standard image classification tasks. Public code is available at https://github.com/NYU-DICE-Lab/privit.

View on arXiv
Comments on this paper