ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.04610
31
4

DeepSpeed4Science Initiative: Enabling Large-Scale Scientific Discovery through Sophisticated AI System Technologies

6 October 2023
S. Song
Bonnie Kruft
Minjia Zhang
Conglong Li
Shiyang Chen
Chengming Zhang
Masahiro Tanaka
Xiaoxia Wu
Jeff Rasley
A. A. Awan
Connor Holmes
Martin Cai
Adam Ghanem
Zhongzhu Zhou
Yuxiong He
Pete Luferenko
Divya Kumar
Jonathan A. Weyn
Ruixiong Zhang
Sylwester Klocek
V. Vragov
Mohammed AlQuraishi
Gustaf Ahdritz
C. Floristean
Cristina Negri
R. Kotamarthi
V. Vishwanath
Arvind Ramanathan
Sam Foreman
Kyle Hippe
T. Arcomano
R. Maulik
Max Zvyagin
Alexander Brace
Bin Zhang
Cindy Orozco Bohorquez
Austin R. Clyde
B. Kale
Danilo Perez-Rivera
Heng Ma
Carla M. Mann
Michael Irvin
J. G. Pauloski
Logan T. Ward
Valerie Hayot
M. Emani
Zhen Xie
Diangen Lin
Maulik Shukla
Ian T. Foster
James J. Davis
M. Papka
Thomas Brettin
Prasanna Balaprakash
Gina Tourassi
John P. Gounley
Heidi Hanson
T. Potok
Massimiliano Lupo Pasini
Kate Evans
Dan Lu
D. Lunga
Junqi Yin
Sajal Dash
Feiyi Wang
M. Shankar
Isaac Lyngaas
Xiao Wang
Guojing Cong
Peifeng Zhang
Ming Fan
Siyan Liu
A. Hoisie
Shinjae Yoo
Yihui Ren
William Tang
K. Felker
Alexey Svyatkovskiy
Hang Liu
Ashwin M. Aji
Angela Dalton
Michael Schulte
Karl W. Schulz
Yuntian Deng
Weili Nie
Josh Romero
Christian Dallago
Arash Vahdat
Chaowei Xiao
Thomas Gibbs
Anima Anandkumar
R. Stevens
ArXivPDFHTML
Abstract

In the upcoming decade, deep learning may revolutionize the natural sciences, enhancing our capacity to model and predict natural occurrences. This could herald a new era of scientific exploration, bringing significant advancements across sectors from drug development to renewable energy. To answer this call, we present DeepSpeed4Science initiative (deepspeed4science.ai) which aims to build unique capabilities through AI system technology innovations to help domain experts to unlock today's biggest science mysteries. By leveraging DeepSpeed's current technology pillars (training, inference and compression) as base technology enablers, DeepSpeed4Science will create a new set of AI system technologies tailored for accelerating scientific discoveries by addressing their unique complexity beyond the common technical approaches used for accelerating generic large language models (LLMs). In this paper, we showcase the early progress we made with DeepSpeed4Science in addressing two of the critical system challenges in structural biology research.

View on arXiv
Comments on this paper